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Abstract
Multimodal Recommendation Systems (MRSs) boost tradi-
tional user-item interaction-based methods by incorporating
multimodal information. However, existing methods ignore
the inherent noise brought by (1) noisy semantic priors in
multimodal content, and (2) noisy user interactions in history
records, therefore diminishing model performance. To fill
this gap, we propose to denoise MRSs by jointly EValuating
structure Effectiveness and mitigating Noisy links (EVEN).
Firstly, for semantic prior noise in multimodal content, EVEN
builds item homogeneous consistency and denoises it by eval-
uating behavior-driven confidence. Secondly, for noise in user
interactions, EVEN updates user feedback by denoising ob-
served interactions following implicit contribution evaluation
of high-order representations. Thirdly, EVEN performs cross-
modal alignment through self-guided structure learning, rein-
forcing task-specific inter-modal dependency modeling and
cross-modal fusion. Through extensive experiments on three
widely-used datasets, EVEN achieves an average improve-
ment of 8.95% and 5.90% in recommendation accuracy com-
pared with LGMRec and FREEDOM, respectively, without
extending the total training time.

Introduction
Multimodal recommendation systems (MRSs) enhance tra-
ditional recommendation methods, which primarily depend
on historical user-item interactions, by incorporating multi-
modal content such as item images and textual descriptions
(He and McAuley 2016; Wei et al. 2019, 2020; Wang et al.
2021a; Zhang et al. 2021; Zhou et al. 2023b; Zhou and Shen
2023; Wei et al. 2023a; Yu et al. 2023; Zhou et al. 2023a).
MRSs provide richer content, enabling the capture of fine-
grained modality-level user preference. This enhances the
performance of recommendations and improves user experi-
ence (Deldjoo, Schedl, and Knees 2024). For example, items
with similar visual styles can be recommended based on vi-
sual preferences, or specific types of reading materials can
be suggested based on textual preferences.
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Figure 1: Noise presents challenges for multimodal recom-
mendation systems. (a) Semantic noise introduced by us-
ing multimodal features as priors. For example, an adult
woman searching for light-colored dresses might mistakenly
get children’s white dress recommendations because she
browsed white dresses before. (b) Interaction Noise in user-
item historical records. Users’ historical data might contain
irrelevant preferences due to mis-operations, exploratory be-
haviors, or account sharing.

Existing MRSs explore how to effectively integrate mul-
timodal content to enrich recommendations. Conventional
methods construct user and item representations by lin-
ear fusion the modal feature and ID embedding (He and
McAuley 2016; Liu, Wu, and Wang 2017) or adopt the
attention mechanism (Chen et al. 2019; Liu et al. 2019).
However, the performance is limited because of the con-
strained information of low-order interactions. To capture
high-order connectivity and enhance the recommendation,
Graph Neural Network (GNN)-based collaborative filtering
frameworks are proposed to incorporate multimodal content
in user interest modeling (Wei et al. 2019, 2020; Wang et al.
2021a; Tao et al. 2022; Wei et al. 2023b) or inject multi-
modal semantic priors into the message-passing mechanism
(Zhang et al. 2021; Zhou and Shen 2023; Yu et al. 2023).

However, MRSs are sensitive to inherent noise, which
misleads the user preference capture and decreases recom-
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mendation performance. In Figure 1, we highlight two types
of noise: semantic noise among items and interaction noise
in user-item feedback. Most existing studies on MRSs suf-
fers from the ignore of above noises. (1) As for semantic
noise, models like LATTICE and FREEDOM try to connect
items through similarity-based graphs. However, they face
challenges related to diverse user preferences (Wei et al.
2023a), the limitations of cosine similarity in high dimen-
sions (Ahn 2008), and discrepancies in modal distribution
(Liang et al. 2021). These lead to inaccurate semantic links
and point out wrong user interest. (2) As for interaction
noise, factors like mis-operations, exploratory behaviors, or
account sharing introduce noise in user-item interactions,
confusing the user interest modeling. Although few meth-
ods realize the noise in MRSs, current methods are based
on strong assumptions to detect noisy records. RGCN uses
implicit feedback to identify noise, assuming items in false-
positive interactions are distinct from user preferences. This
overlooks false positives similar to user interest. The chal-
lenge we face is how to identify and mitigate item semantic
noise and user-item interaction noise in MRSs without mak-
ing special assumptions about user behavior, allowing for
greater flexibility and robustness across user profiles and in-
teraction patterns.

In this paper, we propose a EValuating graph structure
Effectiveness and mitigating Noisy links (EVEN) method
for recommendation, named EVEN, which mitigates the im-
pact of inherent noise. Firstly, to incorporate multimodal
raw features while denoising semantic priors, we propose
building item consistency into a homogeneous graph, eval-
uating the graph structure through task-specific relevance
analysis, and denoising it via behavior-driven adjustments.
Secondly, we introduce an adaptive graph pruning method
to denoise observed interactions by evaluating implicit con-
tribution of representations during graph message-passing.
This approach mitigates the impact of less-contributed user
feedback, enabling the model to focus on more preference-
relevant interactions. Thirdly, we propose a self-guided
structure learning module to achieve task-specific cross-
modal alignment and fusion, boosting MRSs performance
against inherent noise and multi-source information. Our
contributions can be summarized as follows:

• We introduce a novel method EVEN to evaluate and
mitigate the inherent semantic and interaction noise on
higher-order structure connectivity in MRSs, boosting
the performance without additional user assumptions.

• We propose to denoise the multimodal content seman-
tic priors by building and evaluating task-specific item
consistency in the homogeneous graph. An implicit
contribution-based graph prune method over user-item
heterogeneous graph is proposed to evaluate and denoise
the observed interactions.

• We present a self-guided structure learning method to
achieve task-specific cross-modal alignment and fusion
over the denoised two graphs, which enhances fine-
grained representation and preference mining.

• Through experiments across Amazon datasets, EVEN
demonstrates its effectiveness and achieves an aver-

age improvement of 8.95% and 5.90% in recommenda-
tion accuracy compared with LGMRec and FREEDOM,
without extending the total training time.

Related work
Multimedia Recommendation
MRSs leverage diverse modalities information to enrich
recommendations. Existing MRSs can be divided into two
types: (1) Item embedding direct fusion-based methods.
BPR (He and McAuley 2016) is the first work to integrate
visual raw features with ID embeddings to represent items.
MAML (Liu et al. 2019) refines users’ multimodal prefer-
ences via attention mechanisms. With the advent of GNN,
models such as MMGCN (Wei et al. 2019), GRCN (Wei
et al. 2020), DualGNN (Wang et al. 2021a), SLMRec (Tao
et al. 2022),and MGCN (Yu et al. 2023) leverage graph con-
volutions to inject higher-order dependency into item repre-
sentations, capturing connectivity through message-passing.
Recently, contrastive learning is introduced to fuse multi-
modal item embeddings in BM3 (Zhou et al. 2023b) and
MMSSL (Wei et al. 2023a). (2) Structure-based methods
construct another view of Item-Item (I-I) graph to build item
dependency. LATTICE (Zhang et al. 2021) designs a learn-
able layer to construct I-I structure and generate item se-
mantic embedding over the dynamic I-I graph. FREEDOM
(Zhou and Shen 2023) freezes the I-I graph and mines item
representations over the frozen graph. LGMRec (Guo et al.
2024) builds the many-to-many dependency between item
and features into a hypergraph and generate global item em-
bedding over hypergraph message-passing.

Denoise Learning in Recommendation
Denoising efforts in MRSs are limited and can be catego-
rized into two types: (1) Learning-based methods. GRCN
(Wei et al. 2020), which use pre-defined functions to as-
sess edges based on relevance to user preferences, mitigat-
ing noise through edge confidence scores. (2) Rule-based
methods. LayerGCN (Zhou et al. 2022) and FREEDOM
(Zhou and Shen 2023), which adjust structures using pre-
determined rules without relying on training feedback.

For traditional recommendation methods without multi-
modal information, existing denoise methods can be divided
into two categories: (1) Sample selection methods (Ding
et al. 2019; Gantner et al. 2012). (2) Sample re-weighting
methods (Hu et al. 2021; Wang et al. 2021c). ADT (Wang
et al. 2021b) addresses the challenge of integrating false-
positive interactions in initial training stages by dynamically
balancing truncation and re-weighted losses. SGDL (Gao
et al. 2022) guides training with meta-learning by leverag-
ing early training interactions for noise identification. How-
ever, its dependency on initial data might lead to misleading
denoising when the data is biased, exacerbating noise issues
and extending the training time.

To avoid potential biases in early-stage data without re-
lying on additional assumptions about user behavior, we
propose a data-independent denoising method. EVEN inte-
grates multimodal denoising feature fusion with user-item
dependency exploration from a global perspective.
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Figure 2: Framework of EVEN. For semantic priors noise in multimodal features, EVEN first builds item content consistency
into a homogeneous graph, and then denoises it by integrating task-specific and behavior-driven adjustments. For noise in
observed user interactions, we introduce an implicit influence-based graph pruning method, which denoises user feedback
by evaluating the impact of high-order representations during message-passing over the user-item heterogeneous graph. After
obtained the denoised graphs, EVEN performs task-specific cross-modal alignment through self-guided structure learning. This
process enhances robust and fine-grained representations by emphasizing the relative relationships in feedback, rather than
being misled by individual noisy samples.

Preliminary
Given user-item interactions, we generate a graph G =
{(u, i)|u ∈ U , i ∈ I}, where U and I are the user and item
sets. An edge (u ,i) is formed if an interaction exists, incor-
porating multimodal features. Following (Zhang et al. 2021;
Zhou and Shen 2023), we consider visual and textual modal-
ities. hm

i ,m ∈ {v, t} represents item i’s visual and textual
feature. hID

u and hID
i represents user u’s and item i’s ID

embedding (Zhao et al. 2018). Our denoised multi-modal
system aims to learn user preferences through collaborative
filtering, addressing interaction and semantic noise.

Proposed Method: EVEN
The framework of proposed EVEN is shown in Figure 2. In
the following sections, the detailed designs are shown.

Denoising Multimodal Item Content
To utilize and denoise multimodal features, we first extract
semantic priors from raw multimodal features and construct
a similarity-based item consistency graph. We then incor-
porate task-specific behavior relationships from user inter-

actions to mitigate noise in the item homogeneous graph.
After behavior-driven adjustments, a more comprehensive
item-to-item relationship is built, benefiting from consider-
ing user preferences in addition to item multimodal features.

Constructing Item Semantic Consistency For each
modality m, we construct an item-item graph Am using
raw item multimodal features to extract semantic priors and
mine content consistency. Am captures the inherent con-
sistency between items by establishing edges based on fea-
ture semantic similarity. The adjacency matrix is defined as

Am
ij =

(hm
i )⊤hm

j

|hm
i ||hm

j | , where hm
i is the raw feature of item i

in modality m, Am
ij is similarity score between items i and

j. To enhance graph sparsity, Am is transformed into an
unweighted graph by retaining edges to each item’s top-k1
similar items as Aij = 1, while others are set to 0. This
ensures

∑
j∈I Aij ≤ k1, focusing on the most relevant con-

nections and eliminating less significant ones. The visual
Av and textual At modality similarity graphs are merged
as: A1 = α1A

v + (1 − α1)A
t, where learnable parameter

α1 controls the influence of the visual modality, efficiently
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integrating multimodal contents.

Denoising Item Semantic Priors To mitigate inherent se-
mantic noise in A1, we propose adjusting A1 by incorporat-
ing task-specific behavior relationships. An item occurrence
matrix C is constructed by measuring the shared interest fre-
quency. This is motivated by the fact that if items i and j
are frequently liked by the same user, then i and j are task-
specific relevant. Cij is computed as the count of unique
users interacting with both items i and j:

Cij = |{u ∈ U | Mu,i = 1 ∧Mu,j = 1}| , (1)

where M is the adjacency matrix of the user-item interac-
tion graph G, with Mu,i = 1 denoting an observed interac-
tion between user u and item i.

To avoid the impact of random behaviors, for each item i,
we set the behavior occurrence for the top-k2 items j ∈ I
in Cij to 1, and others to 0. We then merge the task-
specific item occurrence matrix C with the semantic con-
sistency matrix A1 to form a more robust Item-Item (I-I)
graph by introducing a learnable parameter α2 as A2 =
α2A

1 + (1 − α2)C, where A2 is the denoised I-I graph.
Next, A2 is normalized to mitigate the impact of node de-
gree on aggregation:

Â = D− 1
2A2D

1
2 , (2)

with D as the diagonal degree matrix of A2, where Dii =∑
j∈I A2

ij . Normalization ensures a balanced contribution
from each node during message passing.

Denoising User Interactions
We introduce an implicit impact-based graph pruning
method to denoise observed interactions by considering
the contribution of high-order item representations during
message-passing. EVEN probabilistically drop less con-
tributed and high-degree item edges, which preserves es-
sential feedback and prevents over-smoothing during graph
convolution, enhancing recommendation performance by
balancing sparsity and information integrity. Then over the
pruned interactions, EVEN generates refined high-order rep-
resentations of users and items by emphasizing relative feed-
back, minimizing individual sample noises.

Implicit Impact-Based Interaction Evaluator Consid-
ering that observed interactions contains user-preference-
agnostic records, we propose to iteratively assess item con-
tribution by evaluating its impact through the gradients of
previous training round. Gradients capture the extent of loss
function changes with specific parameters, aiding in the
identification and pruning of less-contributed edges. We de-
note the impact indicator of item i in round r as F(i)r =
∂L
∂i

r−1
, where L is the overall optimization function, as

shown in eq. (9). Note that F(i)r is obtained from training
process without additional user behavior assumption.

User Noisy Feedback Pruner Given F(i)r for item i at
round r, the edge pruning probability is set as:

prui =
F(i)r−1∑
j∈I F(j)r−1

· 1√
du

√
di
, (3)

where F(i)r−1 is the contribution of item i at previous round
r − 1,

√
du is the degree of u. Then, we construct a sym-

metric adjacency matrix N ∈ R|U|+|I| from the user-item
interaction matrix M as:

N =

(
0 M

M⊤ 0

)
, (4)

where |U| and |I| represents the users and items number.
Then sample edges in N from the multinomial distribu-

tion with probability vector p =< ...prui... > and target data
length ⌊|G|(1−ρ)⌋, where ρ is the pre-defined dropout prob-
ability, |G| is the total edge number of user-item graph. Now
items with high contribution and low degree are more likely
to be retained. After edge pruning, the symmetric adjacency
matrix is constructed following eq. (4) and re-normalizated
following eq. (2), obtaining refined matrix N̂ r for round r.

The feedback pruner preserves important interactions and
reduces noisy clicks, enhancing model robustness. By iter-
atively refining N̂ r, pruning probabilities adapt based on
previous round impacts. In the inference phase, the original
Laplacian normalization of N is used directly.

Interaction Dependency Denoising For Interaction-
Graph ID Embedding (IG-ID Embedding) generation,
convolutional aggregations are performed on pruned
Interaction-Graph N̂ r of round r. The IG-ID Embedding
of user hID

u and item hID
i are obtained through the stacked

of all the hidden latent with a differentiable function as:
hID
u = READOUT(hID,0

u ,hID,1
u , ...,hID,Lui

u ),

hID
i = READOUT(hID,0

i ,hID,1
i , ...,hID,Lui

i ),
(5)

where hID,0
u and hID,0

i denote the initial ID embeddings of
user u and item i, hID,l

u denotes the IG-ID embedding of
user u at l-th layer, and Lui is the total convolutional oper-
ation layers over N̂ r. Following (He et al. 2020; Zhou and
Shen 2023), we use the default mean function as readout.

To further capture user preference in interactions, we
leverage the potential of self-supervised learning to mine
inter-modal deep-layer feedback relationships. In particular,
N̂ r in every round r can be regarded as contrastive views
of structural perturbations for original noisy user-item graph
N . Therefore, we also perform Lui convolutional aggrega-
tions over original interaction graph N and stack of all the
hidden representations with a differentiable function as

oID
u = READOUT(oID,0

u ,oID,1
u , ...,oID,Lui

u ),

oID
i = READOUT(oID,0

i ,oID,1
i , ...,oID,Lui

i ),
(6)

where oID,0
u = hID,0

u and oID,0
i = hID,0

i . The inter-modal
user-item graph structure loss of round r is defined as:

L1
inter =

∑
u∈U

− log
exp

(
hID
u · oID

u /τ
)

∑
v∈U exp

(
hID
u · oID

v /τ
)

+
∑
i∈I

− log
exp

(
hID
i · oID

i /τ
)

∑
j∈I exp

(
hID
i · oID

j /τ
) ,

(7)

where τ is the temperature hyper-parameter.
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Cross-Modal Dependency Enhancement
To align and fuse cross-modal contents, we propose a self-
guided structure learning module to better distinguish posi-
tive and negative interactions.

Multi-modal Item Dependency Modeling Considering
the modal-specific semantic differences between item multi-
modal contents and item interactions, we explore item con-
sistent dependency through the alignment of multimodal
features and ID embeddings. For multimodal item embed-
ding generation, we first perform graph convolution over
the denoised I-I graph Â using ID embeddings as eID,l

i =∑
j∈N (i) Âije

ID,l−1
i , eID,0

i = hID,0
i , where eID,l

i is the
l-layer Semantic-Graph ID Embedding (SG-ID Embedding)
of item i, N (i) is the neighbor set of i. SG-ID Embedding
integrates the ID embeddings into the multimodal consis-
tency graph, ensuring that the embeddings are aligned and
consistent across different modalities.

Given the IG-ID Embedding hID
i of item i in eq. (5), the

final item representation m∗
i is obtained as: m∗

i = hID
i +

eIDi , eIDi = eID,Lii

i , where Lii is the total layers on Â.
To further align item i’s SG-ID Embeddings eIDi and IG-ID
Embedding hID

i , we define the multi-modal enhancement
loss as:

L2
inter =

∑
t∈I

− log
exp(hID

t · eIDt )/τ∑
k∈I exp(hID

t · eIDk )/τ
, (8)

where τ is the temperature hyper-parameter. It encourages
the cross-modal item feature to be at the same latent space.

To explore the raw multi-modal item feature hm
i ,m ∈

{v, t} in user preference mining, modal-specific encoder
MEm(·) is designed to map hv

i and ht
i into the near latent

space as hm,∗
i = MEm(hm

i ),m ∈ {v, t}. Here we use the
widely used MLPs as the encoder.

Joint Optimization over Two Graphs The final represen-
tation m∗

u of user u is set as the IG-ID Embedding obtained
in eq. (5), that is m∗

u = hID
u . Given m∗

u and m∗
i , the inner

product of m∗
u and m∗

i is used to calculate the core prefer-
ence score rID,∗

u,i . Similar, the side preference scores rID,v
u,i

and rID,t
u,i are obtained by the inner product of m∗

u to the
encoded multi-modal item feature hv,∗

i and ht,∗
i , separately.

We adopt the pairwise Bayesian Personalized Ranking
(BPR) (Rendle et al. 2009) to encourage model chose pos-
itive user-item pair by the given core and side preference
scores rID,∗

u,i , rID,v
u,i and rID,t

u,i . Then the cross-modal depen-
dency optimization over two graphs is as follows:

L = LBPR + λ(L1
inter + L2

inter), (9)

where LBRP is the BRP loss, λ is hyper-parameter to guide
optimization ratio.

Experiments
Experimental Settings
Datasets We conduct experiments on three widely used
and public Amazon dataset: (i) Baby, (ii) Sports and out-
doors, and (iii) Clothing, Shoes and Jewelry.

Evaluation Protocols and Hyperparameters Settings
To make fair comparison, we adopt the same evaluation set-
ting of baselines. The grid search results of hyperparameters
are reported. Detailed description is shown in Appendix.

Compared Baseline Models
We compare our proposed method with both traditional
and multimodal recommendation methods. For traditional
methods, the competitor is graph neural network method
LightGCN (He et al. 2020). For multimodal recommen-
dation methods, the competitors include (1) without I-I
graph: VBPR (He and McAuley 2016), DualGNN (Wang
et al. 2021a), SLMRec (Tao et al. 2022), BM3 (Zhou et al.
2023b), MMSSL (Wei et al. 2023a),LGMRec (Guo et al.
2024) and (2) with I-I graph: LATTICE (Zhang et al.
2021), FREEDOM (Zhou and Shen 2023). We also com-
pare EVEN against existing typical denoising models in
both traditional recommendation systems and MRSs, in-
cluding LayerGCN (Zhou et al. 2022), GRCN (Wei et al.
2020), and ADT (Wang et al. 2021b).

Performance Comparison
Effectiveness Comparison. In Table 1, we compare the per-
formance of all methods across three datasets. The results
show that EVEN outperforms the baselines on all datasets.
Specifically, EVEN boosts R@10 by 3.57%/5.42%/5.58%
on Baby, Sports, and Clothing, respectively, compared to
the second-best method. These consistent gains indicate that
EVEN increases the number of relevant recommendations
and improves their ranking by noise reduction and refined
higher-order connectivity mining.

We also compare EVEN with existing denoising meth-
ods, including traditional GNN-based collaborative filter-
ing approaches like LayerGCN and multimodal approaches
like RGCN. Additionally, we adapt the traditional non-GNN
denoising method ADT for MRSs, using FREEDOM as
the backbone—selected because it does not introduce extra
structural components, ensuring a fair comparison—referred
to as FREEDOM-ADT. As shown in the last five rows of
Table 1, EVEN outperforms these methods, achieving a
25% improvement across all metrics on the Baby dataset.
FREEDOM-ADT’s underperformance highlights the limita-
tions of traditional denoising approaches in addressing the
semantic noise in multimodal features.
Efficiency Comparison. To investigate the training effi-
ciency, we report the model performance changes on metrics
R@10 and R@20 as the training epochs increase in Figure
3. The point where the curve flattens indicates the model
has converged. EVEN shows a more stable and faster con-
vergence rate. Compared to LGMRec, EVEN’s recommen-
dation performance steadily increases during optimization
until convergence. Additionally, EVEN requires the fewest
epochs to reach convergence compared to FREEDOM, LAT-
TICE, and BM3. This shows that EVEN can expedite model
convergence by eliminating potential noise in MRSs.

We also analyze the average training time per epoch
(Train-T), total convergence time (T-Conv), and average in-
ference time (Infer-T) for each model on Baby. As shown
in Table 2, although the Train-T is higher, T-Conv remains
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Method Baby Sports Clothing
R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

VBPR 0.0423 0.0663 0.0223 0.0284 0.0558 0.0856 0.0307 0.0384 0.0281 0.0415 0.0158 0.0192
LightGCN 0.0479 0.0754 0.0257 0.0328 0.0569 0.0864 0.0311 0.0387 0.0340 0.0526 0.0188 0.0236
SLMRec 0.0529 0.0775 0.0290 0.0353 0.0663 0.0990 0.0365 0.0450 0.0452 0.0675 0.0247 0.0303
LATTICE 0.0547 0.0850 0.0292 0.0370 0.0620 0.0953 0.0335 0.0421 0.0492 0.0733 0.0268 0.0330

BM3 0.0564 0.0883 0.0301 0.0383 0.0656 0.0980 0.0355 0.0438 0.0422 0.0621 0.0231 0.0281
FREEDOM 0.0626 0.0985 0.0327 0.0420 0.0717 0.1089 0.0385 0.0481 0.0627 0.0940 0.0336 0.0415

MMSSL 0.0613 0.0971 0.0326 0.0420 0.0673 0.1013 0.0380 0.0474 0.0531 0.0797 0.0291 0.0359
LGMRec 0.0644 0.1002 0.0347 0.0440 0.0720 0.1068 0.0390 0.0480 0.0555 0.0828 0.0302 0.0371

EVEN 0.0667 0.1031 0.0355 0.0448 0.0759 0.1143 0.0411 0.0510 0.0662 0.0978 0.0356 0.0436
improv. ↑ 3.57% ↑ 2.90% ↑ 2.31% ↑ 1.81% ↑ 5.42% ↑ 4.96% ↑ 5.38% ↑ 6.03% ↑ 5.58% ↑ 4.04% ↑ 5.95% ↑ 5.06%

LayerGCN 0.0529 0.0820 0.0281 0.0355 0.0594 0.0916 0.0323 0.0406 0.0371 0.0566 0.0200 0.0247
GRCN 0.0532 0.0824 0.0282 0.0358 0.0599 0.0919 0.0330 0.0413 0.0421 0.0657 0.0224 0.0284

REEEDOM-ADT 0.0492 0.0769 0.0262 0.0333 0.0467 0.0738 0.0257 0.0327 0.0374 0.0578 0.0199 0.0251
EVEN 0.0667 0.1031 0.0353 0.0448 0.0759 0.1143 0.0411 0.0510 0.0662 0.0978 0.0356 0.0436
improv. ↑ 25.94% ↑ 26.21% ↑ 26.60% ↑ 24.02% ↑ 23.54% ↑ 23.39% ↑ 21.81% ↑ 21.79% ↑ 57.24% ↑ 48.86% ↑ 58.93% ↑ 53.52%

Table 1: Recommendation Performance Comparison: Overall performance on three datasets in terms of R@K and N@K are
reported. Last 5 lines show the comparison with existing denoising methods. The top performers are highlighted in bold and
the next best are underlined. improv. is calculated by comparing the best and second best one.

Methods Train-T
(s/epoch)

T-Conv
Time (s)

Infer-T
(s/epoch) R@20

BM3 0.79 79.79 2.85 0.0883
LATTICE 2.35 277.30 2.84 0.0850
LGMRec 3.42 277.02 2.67 0.1002

FREEDOM 1.78 370.24 2.64 0.0985
EVEN 3.46 238.74 2.60 0.1031

Table 2: Efficiency Comparison: Average training time for
each epoch (Train-T), total training converge time (T-Conv),
and average inference time (Infer-T) on Baby.
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Figure 3: Training Convergence Comparison: Epochs versus
R@10 and R@20 on Baby.

comparable and even shorter to most baselines, all while
achieving the best performance. Since the structure denois-
ing of the I-I and U-I Graphs occurs only during the training
phase, then the denoised structure is frozen and used during
the inference phase. Therefore, EVEN does not incur any
additional time costs in Infer-T.

Ablation Study
We design the following four variants of EVEN to evaluate
the contribution of each denoising components:
• EVEN w/o IID ignores the effect of semantic noise in

multimodal item prior (without I-I graph Denoising).
• EVEN w/o UID ignores the effect of interaction noise in

user-item history records (without U-I graph Denoising).
• EVEN w/o IID & UID ignores both semantic noise in

multimodal item priors and interaction noise in user-item
history records (without I-I and U-I graph Denoising).

Dataset Variants R@10 R@20 N@10 N@20

Baby

EVEN w/o IID 0.0655 0.1016 0.0349 0.0443
EVEN w/o UID 0.0637 0.0981 0.0344 0.0433
EVEN w/o IID & UID 0.0631 0.0967 0.0340 0.0427
EVEN w/o MAF 0.0511 0.0807 0.0273 0.0350
EVEN 0.0667 0.1031 0.0355 0.0448

Sports

EVEN w/o IID 0.0741 0.1130 0.0401 0.0501
EVEN w/o UID 0.0739 0.1129 0.0398 0.0499
EVEN w/o IID & UID 0.0730 01120 0.0387 0.0487
EVEN w/o MAF 0.0644 0.0959 0.0353 0.0453
EVEN 0.0759 0.1143 0.0411 0.0510

Clothing

EVEN w/o IID 0.0648 0.0968 0.0349 0.0430
EVEN w/o UID 0.0643 0.0953 0.0346 0.0425
EVEN w/o IID & UID 0.0634 0.0950 0.0343 0.0423
EVEN w/o MAF 0.0413 0.0617 0.0223 0.0275
EVEN 0.0662 0.0978 0.0356 0.0436

Table 3: Ablation studies of four variants on all datasets.

• EVEN w/o MAF ablates the contribution of multimodal
feature (without Multimodal Alignment and Fusion).

In Table 3, we present comparative results on all datasets.
The gap between variants and EVEN shows the performance
gain achieved by each components. EVEN w/o MAF per-
forms the worst, indicating that proposed multimodal infor-
mation alignment and fusion method contributes the MRSs
performance. The gap between EVEN w/o IID & UID
and EVEN shows that although multimodal content con-
tains useful information, the inherent noise in semantic prior
and observed interactions effects the user preference mining.
EVEN w/o IID and EVEN w/o UID shows the effectiveness
of EVEN in the user preference-related denoising over I-I
graph and U-I graph. Denoising the interaction noise gains
more performance compared with semantic noise.

Performance under Noisy Settings
To further verify performance against noise, we perform two
noisy settings: adding extra noise to multimodal raw feature
and user-item interactions. For multimodal semantic noise,
we randomly set some dimensions of raw features as zero.
For noisy interactions, we inject random links into observed
user feedback. The perturbed ratio varies among {0.05, 0.10,
0.20, 0.30}, with 0.00 indicating no extra added noise. Con-
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Figure 4: Performance under different settings of hyperparameters of EVEN on Baby and Sports.
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Figure 5: Performance under different loss weight λ and
dropout ratio β of EVEN on Baby and Sports.

sidering the noise randomness, we conduct four experiments
per setting, presenting the mean and variance in Figure 6.
Performance under Noisy Multimodal Raw Features. As
shown in Figure 6 (a), EVEN consistently outperforms base-
lines across all noise levels, demonstrating its superior ro-
bustness. EVEN’s performance is the least impacted as the
noise intensity increased, showing its stability against noisy
settings. The gap from 0.00 to 0.05 across all models high-
lights the necessity of denoising multimodal content.
Performance under Noisy User-Item Interactions. As
shown in Figure 6 (b), EVEN outperforms other baselines
across all noise levels, highlighting its effectiveness in eval-
uating structural contributions and managing noisy interac-
tions. As the noisy interaction ratio increases, EVEN shows
the most stable performance, while the second-best model,
LGMRec, is the heavily affected by noisy interactions. The
performance drop from 0.00 to 0.05 across all models high-
lights the importance of denoising observed interactions.

Hyperparameters Sensitivity Analysis
Effect of Graph Convolution Layers on Lui and Lii. As
shown in Figure 4 (a)-(d), we adjust the message passing
layers Lui pruned interaction graph N̂ from 2 to 6 and layers
Lui on denoised I-I graph Â from 1 to 5. Compared to LGM-
Rec, which achieves optimal performance with Lui = 2 on
Baby (Guo et al. 2024), EVEN performs best with Lui = 5.
This suggests that EVEN captures deeper inter-layer associ-
ations, effectively countering over-smoothing and uncover-
ing intricate patterns previously concealed by noise.
Effect of Graph Structure Parameter k1 and k2. As
shown in Figure 4 (e)-(h), we vary k1 from 4 to 12 on Baby
and Sports, and k2 from 4 to 12 on Baby and 6 to 14 on
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Figure 6: Performance comparison between EVEN and
other four baselines under two noisy settings on Baby.

Sports. k1 controls the semantically similar neighbor num-
bers to connect in the original I-I graph A1. k2 balances the
trade-off between task-related behavior and random behav-
ior in C. A small k1 may lose item consistency, while a large
k1 may introduce edges with no information gain. Similarly,
a small k2 may under-utilize task-specific information for
denoising A1, whereas a large k2 may introduce negative
impacts due to noise in interactions.
Effect of Temperature τ . τ controls the sharpness of simi-
larity scores, influencing how strongly positive and negative
pairs are separated in the representation space. We empiri-
cally set τ=0.2 on Baby and τ=0.1 on Sports.
Effect of Dropout Ratio ρ and Loss Weight λ. We vary ρ
from 0.5 to 0.8, and λ in {1e-4, 1e-3, 1e-2}. Figure 5 reports
the performance for various combinations of ρ and λ, show-
ing a general decline as the ρ increases. This trend indicates
that a higher ρ may over-denoise valuable information due
to increased sparsity in the graph.

Conclusion
In this paper, we propose a novel model EVEN that evalu-
ate and denoise information in multimodal content and ob-
served interactions for MRSs. EVEN first builds item con-
tent consistency into a homogeneous graph and performs
task-specific, behavior-driven denoising. For observed in-
teraction noise, we propose an implicit contribution-based
graph pruning method to assess and refine user feedback
during message-passing. Then EVEN enhances fine-grained
representations through self-guided structural learning-
based cross-modal alignment and fusion. Experiments show
EVEN’s effectiveness across multiple datasets.
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